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An equation has  been der ived  and expe r imen ta l ly  ve r i f i ed  for  calculat ing the evapora t ion  
ra te  f r o m  a known t h e r m o g r a m ,  or  vice v e r s a ,  taken under  conditions of the rmograph ic  
te sting. 

The rmograph ic  t es t  methods,  including the des iccat ion t h e r m o g r a m  [1] and the di f ferent ia l  t h e rma l  
ana lys i s  [2], a re  m a s s  t r a n s f e r  methods,  i . e . ,  methods based  on the laws of heat  and m a s s  t r a n s f e r  be t -  
ween a spec imen  and the ambient  med ium under  some given conditions. As a rule ,  m a s s  t r a n s f e r  ( evapora -  
tion) is  the p redominan t  p r o c e s s  here  and the t e m p e r a t u r e  cu rves  r e p r e s e n t  i t s  t rend [3]. Fo r  n u m e r i c a l  
computat ions  re la ted  to the rmograph ic  ana lys i s ,  the re fo re ,  i t  is  mos t  convenient  to use the des i cca t ion - ra t e  
curve (the de r iva togram) ,  although i ts  d i rec t  and suff icient ly accura t e  record ing  during a t es t  i s  v e r y  dif-  
f icult  [4]. Record ing  the spec imen  t e m p e r a t u r e  (the t he rmogram)  during a tes t  is  much s i m p l e r  and more  
accura te .  It  thus becomes  n e c e s s a r y  to e s t ab l i sh  a re la t ion  between the t h e r m o g r a m  and the d e r i v a t o g r a m  
which would allow one to compute d e r i v a t o g r a m s  f r o m  known t h e r m o g r a m s  and vice v e r s a .  

We will f r s t  cons ider  the s imples t  case:  des iccat ion by the t h e r m o g r a m  method. As is  well  known, 
the liquid evapo ra t e s  here  f r o m  the spec imen  at  a constant  ambien t  t e m p e r a t u r e ,  and the t h e r m o g r a m  r e -  
p r e s e n t s  the t e m p e r a t u r e  di f ference A T  between the spec imen (T1) and the ambient  a tmosphe re  (To) as  a 
function of t ime.  The heat  supplied to a spec imen  by way of heat  t r a n s f e r  is  spent  on evapora t ing  the Liquid 
and ra i s ing  the t e m p e r a t u r e  of the specimen:  

a S h T  = L d m _~ (Corn ~ + cm) dT---ki . (1) 
dT dT 

This equation of heat  balance does,  in pr inc ip le ,  r e la te  the t h e r m o g r a m  to the de r iva tog ram.  Until 
now, however,  this equation has  not been used for  d e r i v a t e g r a m  computat ions ,  under the i m p r e s s i o n  that 
the heat  t r a n s f e r  coeff icient  a ,  being a function of the moi s tu re  content in the spec imen  as  well  as  of the 
des iccat ion ra te ,  would be r a t he r  difficult to e i the r  m e a s u r e  o r  calculate .  Meanwhile, as  will be shown 
here ,  during a t h e r m o g r a m  record ing  the heat  t r a n s f e r  coeff icient  a r e m a i n s  a lmos t  independent of  both 
the moi s tu re  content and the des iccat ion ra te .  The o ther  coeff ic ients  in Eq, (1) depend also negligibly 
litt le on the mois tu re  content. To the f i r s t  approximat ion ,  the re fo re ,  one may  t r ea t  Eq. (1) as  one with 
constant  coeff icients .  On such a bas i s ,  as  will be shown here ,  a d e r i v a t o g r a m  can be computed f r o m  a 
t h e r m o g r a m  accu ra t e ly  within 3-7%, which is  comparab le  to the usual  a c c u r a c y  of d i rec t  d e r i v a t o g r a m  
m e a s u r e m e n t s .  

The fact  that a depends ne i ther  on the evapora t ion  ra te  nor  on the moi s tu re  content, as  has been 
es t ab l i shed  by the author  in his e x p e r i m e n t a l  study [5], a g r e e s  with the conclusions of o ther  au thors  [6]. 
Indeed, i t  has been shown in [7, 8] that  the i nc r ea se  in a during the evapora t ion  of a liquid f r o m  c a p i l l a r y -  
po rous  bodies is  r e l a t ed  not to an addit ional t r a n s f e r  of heat  due to vapor  diffusion (this i s  a smal l  amount) 
but to a depending of the evapora t ion  zone to the drop in moi s tu re  content and a lso  to the e r r o r s  in the 
m e a s u r e m e n t  of the true sur face  t empe ra tu r e .  As a consequence,  to the t he rma l  r e s i s t a n c e  of the boundary 
l aye r ,  which de t e rmines  the magnitude of a ,  there  is  added the t h e r m a l  r e s i s t ance  of a dry  l aye r  between 
the spec imen  sur face  and the evapora t ion  zone, resu l t ing  in an apparen t ly  higher  m e a s u r e d  value of ~. 
When those f ac t o r s  a r e  insignif icant ,  on the o ther  hand, a a p p e a r s  only sl ightly dependent on the desiccat ion 
ra te .  It  has  been shown in [9], fo r  example ,  that during evapora t ion  f r o m  the f r ee  sur face  of the liquid 
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r e m a i n s  a lmos t  constant  while the evapora t ion  ra te  v a r i e s  through a f ac to r  of 7-8. 

During the rmograph ic  t e s t s  one usual ly  main ta ins  spec ia l  conditions. They a re  a lways  p e r f o r m e d  in 
the "soft"  mode so as  to keep the t e m p e r a t u r e  grad ien ts  inside the spec imen  smal l  and thus to improve  the 
a c c u r a c y  of t e m p e r a t u r e  m e a s u r e m e n t s  at  the sur face .  F u r t h e r m o r e ,  the th ickness  of a t e s t  spec imen  does 
not exceed  1-2 m m  and, for  this reason ,  the added depth of the evapora t ion  zone is  a lways much s m a l l e r  than 
the th ickness  of the boundary layer ,  which during na tura l  convect ion may  be of the o r d e r  of a few cen t i -  
m e t e r s .  Such t e s t  modes  a re  r equ i red  in the appl icat ion of the t he rmograph ie  methods,  but they also 
ensu re  that  a will, within t es t  accuracy ,  depend negligibly litt le on the ex te rna l  m a s s  t r ans fe r .  In this way, 
the cons tancy of a (within 2-5%) during our  t h e r m o g r a m - - d e s i c e a t i o n  t e s t s  i s  now theore t ica l ly  justif ied.  

In o r d e r  to use Eq. (1) for  computat ions,  one mus t  know the th ree  coeff ic ients  in it: L depends only 
on the kind of the evapora t ing  substance and can ea s i l y  be found in tables ;  the heat  capaci ty  cm + c0m 0 i s  
made up e s sen t i a l ly  of the heat  capac i ty  of the v e s s e l  with the t e m p e r a t u r e  probe  c0m 0, constant  for  a given 
e x p e r i m e n t  but different  f r o m  one e x p e r i m e n t  to another .  The heat  t r a n s f e r  in the spec imen  a S  depends 
on the t es t  conditions: t e m p e r a t u r e ,  p r e s s u r e ,  and a i r  ve loc i ty  nea r  the surface .  Thus, in o rde r  to use 
Eq. (1) for  computat ions ,  i t  b ecom es  n e c e s s a r y  to m e a s u r e  a S  in each  t e s t  mode and to m e a s u r e  the heat  
capac i ty  c0m 0 once for  a given exper iment .  

The s imp le s t  way to de te rmine  a S  is  during the ini t ial  t e s t  per iod ,  when excess  f ree  liquid evapo ra t e s  
above the spec imen  surface .  The evapora t ion  ra te  (dm/dr)  0 and the t e m p e r a t u r e  difference AT 0 a re  then 
constant.  F r o m  (1) we find now 

~s= Are ~ o -  (2) 

Since the evaporation rate is constant, it can be measured quite accurately by plain weighing (without plot- 
tingthe mass curve) and thus determining the loss of mass Am 0 within a sufficiently long period of time 
Ar 0. This yields  

o:S -- LAme 
AToA~o (3) 

Inse r t ing  into (1), we obtain 

dm hmo A T +  c~176 + cm dT 
d-~-= A%AT o L dv (4) 

De te rmin ing  the heat  capac i ty  of the v e s s e l  c0m 0 r e q u i r e s  only one evapora t ion  t e s t  with the pure  liquid such 
as  water ,  for  example .  The evapora t ion  ra te  i s  f i r s t  constant,  then d rops  sharply ,  and finally r e m a i n s  
equal  to zero.  Fo r  the l a s t  s tage we have 

d (AT) 
aSAT .+ corn o - -  = 0. (5) 

dt 

The solution to this d i f ferent ia l  equation is  

F r o m  here  

AT---- A exp I-- aST I. 
t come J 

(6) 

(zS~ 
In AT ---- In A - -  - -  (7) 

come 

The slope of the las t  t h e r m o g r a m  segment  in semi loga r i thmic  coordina tes  InA T, r yields  a g / c 0 m  0. The 
magnitude of a S  for  a given t e s t  mode i s  found f r o m  the f i r s t  s tage of the test ,  as  shown ea r l i e r .  Thus, 
c0m 0 i s  de t e rmined  f r o m  a single evapora t ion  t e s t  with pure  water .  The heat  capaci ty  of the spec imen cm 
mus t  be ca lcula ted  separa te ly ,  however ,  but this may  be done v e r y  roughly,  inasmuch as  c m  is  usual ly  not 
g r e a t e r  than 10-20% of c0m 0. In o r d e r  to check this en t i re  p rocedure ,  evapora t ion  t e s t s  with pure  water  
were  p e r f o r m e d  under  va r ious  conditions: a t  320~ and at  380~ As a resu l t ,  the l a s t  segments  of the 
t h e r m o g r a m s  in lnAT, T coord ina tes  were  found to be s t ra igh t  l ines  (within t e s t  accuracy) .  The heat  capa -  
ci ty c0m 0 ca lcula ted  f r o m  these cu rves  was the same within 2%, although a S  differed by as  much as  a fac tor  
of 2. 

The val idi ty  of Eq. (4) for  ca lcula t ing the evapora t ion  ra te  has  been es tab l i shed  by a t e s t  se t  up as  
shown in [10, 11]. The evapora t ing  liquids were  water ,  methyl  alcohol,  and benzene.  Two spec imens  of 
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Fig. 1. Kinetic cu rves  obtained by record ing  the desiccat ion 
t h e r m o g r a m s  for;  (a) f i ne -po ros i t y  s i l ica  gel mois tened  with wa-  
te r ,  (b) c o a r s e - p o r o s i t y  s i l ica  gel mois tened  with water ,  (c) c e -  
ment  mois tened  with methyl  alcohol.  A T  (~ (1), dT/dT(. 102(~ 
/sec))  (2), dm/dT(" 108(kg/sec)) (3), K (dimensionless)  (4). Tes t  
t ime T(. 10 -a sec).  

s i l ica  gel with different  po ros i t i e s  and a concre te  spec imen  se rved  as  the d i spe r se  phase .  Fo rmu la  (4) 
was ve r i f i ed  under  va r ious  conditions. It  i s  well  known that a i n c r e a s e s  with inc reas ing  a i r  p r e s s u r e ,  with 
r i s ing  t e m p e r a t u r e  of the spec imen,  and with higher  ve loc i ty  of the venti lat ing a i r  [12, 13]. F o r  this reason,  
the m e a s u r e m e n t s  were  p e r f o r m e d  at  low a i r  t e m p e r a t u r e s  and p r e s s u r e s  (T = 320~ p = 2.5.103 Pa) as  
well as  at  high t e m p e r a t u r e s  and p r e s s u r e s  (T = 380~ p = 105 Pa).  The ve loc i ty  of venti lat ing a i r  in the 
t e m p e r a t u r e - - p r e s s u r e  c h a m b e r o f  the tes t  appara tus  was a lso  higher  in the second mode. 

The des iccat ion t h e r m o g r a m  AT(T) was r eco rded  together  with the m a s s  curve  re(T). The l a t t e r  was 
plot ted to a v e r y  la rge  sca le  [11]: the char t  sens i t iv i ty  reached  0.3 m g / m m  toward the end of the test ,  when 
the total  change in m a s s  amounted to about 4 g, and this ensured  a quite re l iab le  computat ion of the de r iva to -  
g r am.  

Typical  r e s u l t s  of these m e a s u r e m e n t s  and calcula t ions  a re  shown in Fig. 1. Curves  1 r e p r e s e n t  the 
des iccat ion t h e r m o g r a m s ,  cu rves  2 r e p r e s e n t  the ra te  of t e m p e r a t u r e  change, and curves  3 r e p r e s e n t  the 
evapora t ion  ra te .  The solid cu rves  3 were obtained by test ,  while the points  were  ca lcula ted  accord ing  to 
Eq. (4). Curve 4 r e p r e s e n t s  the ra t io  of heat  spent  on r a i s ing  the spec imen  t e m p e r a t u r e  to total  heat  sup-  
pl ied (this will be d i scussed  later) .  According to the graphs ,  the ca lcula ted  values  ag ree  c lose ly  with the 
m e a s u r e d  d e r i v a t o g r a m  (within a 3-7~0 e r r o r ) .  The calcula ted  values  deviate f r o m  the m e a s u r e d  ones on 
the high side as  well as on the low side, which indica tes  that the e r r o r  is  a r andomone  and p robab ly  due to 
inaccura te  m e a s u r e m e n t s  of t e m p e r a t u r e  and evapora t ion  ra te .  The calcula ted  d e r i v a t o g r a m  concurs  
with the m e a s u r e d  one throughout the en t i re  t es t  range,  at  both high and tow evapora t ion  ra tes .  F o r  in-  
s tance,  the ca lcula ted  d e r i v a t o g r a m s  for  s i l ica  gels  r i s e  s lowly a f t e r  the f i r s t  drop (Fig. la ,  b), jus t  as  
the m e a s u r e d  curves .  

Thus,  the r e su l t s  indicate that Eq. (4) with constant  coeff ic ients  does re la te  the d e r i v a t o g r a m  to the 
t h e r m o g r a m  within an e r r o r  not g r e a t e r  than 3-7% and, there fore ,  is  en t i r e ly  suitable for  computat ions.  

On the bas i s  of Eq. (1) one can also solve the r e v e r s e  p rob l em,  name ly  compute the des iccat ion t h e r -  
m o g r a m  f r o m  a known de r iva togram.  Indeed, Eq. (1) for  A T  is  a l inear  di f ferent ia l  equation with constan~ 
coeff icients .  I t s  solution is  [14] 

aS~r t [  ~ L dm ex p aS~: dT + A~] . (8) 

Although i t  i s  much e a s i e r  during a t es t  to r e c o r d  the t h e r m o g r a m  than the d e r i v a t o g r a m  and although it  
usual ly  is  not n e c e s s a r y  to compute the t h e r m o g r a m  f r o m  a known de r iva tog ram,  Eqs.  (8) and (1) a r e  of 
i n t e r e s t  as  means  for  a complete  ana lys i s  of the c h a r a c t e r i s t i c  r anges  of t h e r m o g r a m s  and de r iva tog rams .  
Such an ana lys i s  i s  impor tan t  e spec i a l l y  with r e g a r d  to the s t ra igh t  segments  of des icca t ion  t h e r m o g r a m s ,  
which a re  singled out for  a study of the f o r m s  of bond between liquids and d i spe r se  m a t e r i a l s  [1]. Le t  us 
cons ider  this p r o b l e m  m o r e  thoroughly. 

The t h e r m o g r a m  will be r e p r e s e n t e d  in t e r m s  of a power  s e r i e s  
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AT = X a(e. (9) 
i = 0  

Then, according to (1), the evaporat ion ra te  becomes  
n 

d m =  ~_~ _~ [aS( + ic,ml~(i-')]. (10) 
d* 

i=O 

It is  ea sy  to a sce r t a in  by a simple substitution that to a l inear  segment  on the t he rmogram 

AT = a0 + al~ (11) 

there  cor responds  a l inear  segment  on the de r iva togram 

_~_ = ~  + ~ d m  ( aSa~ clmlal ) + aSalL ~c. (12) 

To a parabol ic  segment on the t he rmogram there  also cor responds  a parabol ic  segment on the der iva togram,  
with the respec t ive  second der ivat ives ,  which de termine  the d i rec t ion of curva ture ,  having the same signs 
on both d iagrams:  

d~(hT) = 2a2; = - -  av (13) 
d* z ~ \ dr ) L 

In other  words,  a convex segment  on the der iva togram always cor responds  to a convex segment on the 
the rmogram.  If the la t te r  is  r ep r e sen t ed  by a polynomial  of a higher  than second degree,  however,  then 
the convex and the concave segments  on the der iva togram may not co r respond  to those on the the rmogram.  

Solving the r e v e r s e  p rob lem on the bas is  of Eq. (8) is  more  difficult. If the der iva togram is r e -  
p r e se n t e d  in t e r m s  of a power  s e r i e s  

n 
dm • b,~ i, (14) 

i=o 

then inser t ing  (14) into (8) yields  

AT=  ~ g i~ i+  A, exp{--  ~S----~* / , (15) 
i~O Clml" J 

where gi a re  constant coeff icients .  The f i r s t  t e r m  in (15) is  a polynomial  of the same degree as in (14). 
The second t e r m  in (15) r ep r e sen t s  a "drag" in the t h e r m o g r a m  following a sharp change in the evaporat ion 
rate .  The magnitude of this  t e r m  depends on the heat  capaci ty  of the vesse l  with the specimen ciml and 
can genera l ly  be appreciable .  

F o r  i l lustrat ion,  curves  4 in Fig.  1 r e p r e s e n t  the coefficient  

K = clml dT (16) 
o:SAT d'~ 

This coeff icient  indicates  what f rac t ion  of the heat supplied to a specimen is  spent on ra is ing the t em-  
pe r a tu r e  of the la t ter .  These graphs indicate also that the t e r m  which accounts for  the heat capaci ty of a 
specimen is  ve r y  significant, espec ia l ly  at low evaporat ion r a t e s  (toward the end of the test),  and may not 
be d is regarded.  

It has been shown in [4] that the shape of a desiccat ion t h e r m o g r a m  for  typical  d isperse  mate r ia l s  is 
the same as  the shape of the respec t ive  der iva togram.  The preced ing  analysis  of Eqs. (1) and (8) conf i rms 
tMs concidence in t ime between the respec t ive  l inear  segments  on both diagrams.  There  is  no exact  p r o -  
por t ional i ty  between them, however,  so that segments  of h igher -degree  curva tures  must  be different  on 
both d iagrams.  

With the aid of Eq. (4) one can also compute the mass  curve  for  a specimen f rom its thermogram.  
Indeed, in tegrat ing (4) yields  

m (~) Am~ ~ATd~-- clm~ AT. (17) 
A%AT o L 

In o r de r  to compute the mass  curve  according to formula  (17), i t  is  n ece s sa ry  only to measure  the loss  of 
mass  A m  0 within a sufficiently long pe r iod  of t ime AT 0 at  the beginning of the t es t  (during the evaporat ion 
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of f ree  liquid). This can be done by means of plain (not recording)  scales .  Thus, the application of fo rmula  
(17 makes feasible,  in pr inciple ,  a thermographic  analysis  on the basis  of the desiccat ion t he rmogram 
without d i rec t  record ing  of the mass  curve.  

We will now consider  test ing by different ial  the rmal  aaa!ysis .  In this case the tes t  specimen I and the 
iner t  (not changing throughout the test) specimen 2 are  both placed in a medium whose t empera tu re  T o r i s e s  
l inear ly  with time. The t he rmogram here  r ep re sen t s  the t empera tu re  difference between tes t  specimen 
(T 1) and ine r t  specimen (T2). In the light of the e a r l i e r  discussion,  one can wri te  for  both specimens:  

dmI -7- dT1 (18) alS,(T~ - -  To) = L1 ~ -  c~rnl d-~ ' 

dm2 dT~ (19) %S2(T 2 --To) = L~ ~ -{- c2m 2 - -  

d T  

The ine r t  specimen is  usual ly  se lec ted  so that the surface  and the heat  capaci ty  of both specimens be the 
same,  with also equal heat t r an s f e r  coefficients.  Then, subtract ing (19) f rom (18) and consider ing that 
the mass  of the iner t  specimen remains  constant,  we have 

din1 4- d(hT) (20) alSIAT = L1 ~ qm, d----~ 

This equation is  ident ical  in fo rm to Eq. (1), but A T has a different  meaning here.  Consequently, Eq. (1), 
or  the identical  Eq. (20), is  within a na r row tempera tu re  range valid not only for  the t h e rm o g ram  mode but 
also for  the different ial  the rmal  analysis  of desiccation.  When desiccat ion for  a differential  thermal  analy-  
sis cover s  a wide t empera tu re  range,  then Eq. (1) r emains  valid but i ts  coeff icients  can no longer  be con-  
s idered  constant and, therefore ,  computations become more  unwieldy. Never the less ,  in this case too 
Eq. (1) is quite useful  as a basis  for  distinguishing on kinetic d iagrams between the evaporat ion of volati le 
components  f rom a specimen and other  phase t rans format ions  (e. g . ,  recrys ta l l iza t ion) .  

Thus, we have es tabl ished a quantitative re la t ion between the t he rmogram and the der iva togram of a 
desiccat ion p rocess ,  making it  possible  to comple te ly  compute any one of these curves  when the other  is  
k / l o w n .  
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specif ic  heat; 

i s  the integrat ion constant;  
are  the constant coeff icients  in the T and dm/dT se r i e s  expansions.  
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